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    Chapter 27   
 The   Meta Soil Model: An Integrative 
Multi- model Framework for Soil Security                     

     Sabine     Grunwald     ,     Katsutoshi     Mizuta    ,     Marcos     B.     Ceddia    , 
    Érika     F.  M.     Pinheiro    ,     R.     Kay     Kastner     Wilcox    ,     Carla P.   Gavilan    , 
    C.     Wade     Ross    , and     Christopher     M.     Clingensmith   

    Abstract     The profound human-centric dominance in the Anthropocene has cre-
ated changes in land use, biomes, climate, food networks, economies, and social 
communities, which in turn have impacted global resources, such as food, energy, 
and water, as well as the soils, that humanity and other terrestrial life-forms depend 
on for survival. We posit that a new  integrative science  is needed to support  global 
soil security  that facilitates improved soil synthesis of data, knowledge, understand-
ing, experiences, beliefs, values, and actions related to soils considering multiple 
perspective dimensions, such as soil-environment, soil-politics, and soil-human. 
 Integrative soil security  – a new term we coin in this paper – is based on (i) integra-
tion of individual and collective human needs, uses, values, beliefs, and perceptions 
of soils coalesced with (ii) quantitative knowledge of soils derived through empiri-
cal observation and quantitative analysis as well as (iii) systems that soils are 
embedded in (e.g., economic, political, social, and legal systems). We propose a 
Meta Soil Model (MSM) that is rooted in integral theory and integral ecology as the 
foundation for a new  integral soil security  with cognizance as the key integrator. We 
defi ne an MSM as an integrative, multi-model framework to assess soil security 
within the context of regional and global human-environmental interactions. The 
MSM fosters enactment for securing soils rooted in inter-, trans-, and post-(integral) 
disciplinary thinking and allows to diagnose integration gaps, such as the values and 
beliefs people hold about soils and scientist’s observations, data, maps, and models 
of soils, ultimately constraining global soil security.  

  Keywords     Meta Soil Model   •   Soil security   •   Integration   •   Integral theory   •   Integral 
ecology   •   Multi-model  
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27.1       Signifi cance and Rationale 

 The terrestrial biosphere has made the transition from being primarily driven by 
natural  biophysical   processes to an anthropogenic biosphere shaped primarily by 
human systems in the latter half of the twentieth century (Ellis  2011 ). This profound 
human-centric dominance in the Anthropocene has created changes in land use, 
biomes,  climate  , food networks, economies, and social communities, which in turn 
have impacted global resources, such as food, energy, and water, as well as the soils, 
that humanity and other terrestrial life-forms depend on for survival (Amundson 
et al.  2015 ) (Fig.  27.1 ). As such, human security depends on the health/state of these 
resources. Generally, security denotes the state of being free from danger or  threat   
(King and Murray  2001 ). Hence, securing soils can be defi ned as the freedom from 
risks of losing (i) a specifi c or a group of  soil functions  , (ii)  goods and services   that 
soils provide to benefi t humans and – in its broadest sense – (iii) sustainability of 
life on Earth. Unfortunately, there is no absolute threshold or method that can clas-
sify a soil as “secure” or “insecure.” Here we advocate a relative view along a spec-
trum of soil security-insecurity with the tendency, likelihood, or  possibility   to be in 
a present state of “more” or “less” secure.

ExteriorInterior

Soil security

Meta Soil Model

Integral Map

Meta Mega Model

Environmental security
(climate, soil, water)

Health, food and
energy securities

Human
security

  Fig. 27.1    Nested hierarchical structure of different securities with soil security placed within 
environmental security. Soil security serves to support other securities, such as health, food, and 
energy security, which are encompassed holonically by human security       
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   The risk of losing soil security is tied to the fact that soil resources are fi nite 
(Schmidtz and Willott  2012 ; Oliver and Gregory  2015 ). The competition among 
uses is amplifi ed as the specifi c needs (e.g., food and fi ber production,  bioenergy  , 
biodiversity, recreation, preservation of natural beauty) increase, often at the 
expense of  soil degradation  . We assert that to achieve soil security depends on the 
vulnerability and  resilience   of soil and soil-ecosystems. Adger ( 2006 ) described 
vulnerability as “the state of susceptibility to harm from exposure to stresses associ-
ated with environmental and societal change and from the absence of capacity to 
adapt.”  Resilience   has emphasized the elasticity and capacity of an ecosystem to 
recover from  threat  , stress, or continued sustained use (Folke  2006 ). Noteworthy, 
processes and response feedbacks to soil-ecosystems have accelerated in the 
Anthropocene jeopardizing both the  resilience   and sustainability of soil-ecosystems 
at local, regional, and global scales (Grunwald et al.  2011 ). 

 Given the complexity underlying soil security – namely, risk, vulnerability,  resil-
ience  , and sustainability of soil and soil-ecosystems – an integrative framework is 
needed that allows us to harmonize human, soil, and ecosystem dimensions. Such 
an integrative framework goes beyond individualized and compartmentalized 
research assessing specifi c  soil properties   (e.g., soil organic carbon), soil processes 
(e.g., decomposition),  soil functions   (e.g., storage of nutrients),  soil quality   (e.g., 
aggregation of multiple soil properties), soil maps (e.g., assessment of the spatial 
distributions of  soil properties  ), or soil models (e.g., assessment of  soil change  ). 
These individual components of soil security are all critically important, yet indi-
vidually they fall short to assess soils in a holistic manner. There are silos of studies 
of soils that have focused in depth on assessing separately the condition,  capability  , 
 capital  ,  codifi cation  , and  connectivity   – identifi ed as the core dimensions of soil 
security (McBratney et al.  2014 ). These  fi ve dimensions   of soil security have been 
described conceptually but at this point in time lack explicit quantifi cation and inte-
gration. We posit that a new integrative science is needed to support global soil 
security that facilitates improved soil synthesis of data, maps, knowledge, under-
standing,  interpretations  , beliefs, values, and actions considering multiple perspec-
tives, such as soil-environment, soil-politics, and soil-human. In ecology, synthesis 
has been recognized as a key integrative concept, and it occurs when disparate data, 
concepts, or theories are combined in ways that yield new knowledge, values, 
insights, understanding, or explanations (Pickett et al.  2007 ; Peters  2010 ). Science 
integration is the process by which insights are incorporated or assimilated into an 
individual’s and society’s worldviews, e.g., to improve  soil quality   (Grunwald et al. 
 2015 ). Therefore,  integrative soil security  – a new term we coin in this paper – is 
based on (i) integration of individual and collective human needs, uses, values, 
beliefs, and perceptions of soils coalesced with (ii) quantitative knowledge of soils 
derived through empirical observation and quantitative analysis as well as (iii) sys-
tems that soils are embedded in (e.g., economic, political, social, and legal systems). 
In short,  integrative soil security  is based on the human domain + assessment/quan-
tifi cation of soils and soil-ecosystems. Integration linking soil models across tempo-
ral and  spatial scales   is still in its infancy (Grunwald et al.  2011 ). Yet, they are 
urgently needed to connect  pedon   and global soil-ecosystems and assess their 
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change and evolution through time. In this chapter, we adopt integral theory (Wilber 
 2000a ,  b ) and  integral ecology   (Esbjörn-Hargens and Zimmerman  2009 ) as the 
foundation for a new  integrative soil security . We propose a  Meta Soil Model 
(MSM)   that is rooted in  integral theory   with  cognizance   as the key integrator 
(Fig.  27.2 ). Cognizance describes the knowledge,  awareness  , and perceptions held 
by individuals and people (communities) interacting with soil-eco and other sys-
tems that pertain to secure soils. Hence, without cognizance there is no tight integra-
tion among the fi ve Cs ( condition  ,  capability  ,  capital  ,  codifi cation  , and connection) 
proposed earlier by McBratney et al. ( 2014 ).  Cognizance   brings forth clarity and 
insight to wisely act, decide, and manage a soilscape due to intrinsic motivation to 
secure soils and derive other benefi ts and services that depend on them (e.g., food 
production, fi ltration of endocrine disruptors, carbon storage, preservation of biodi-
versity, and human livelihood). This point is often overlooked because simple 
awareness that a soil is degraded or limited in some way or another to provide a 
specifi c function or benefi t (e.g., maximize  crop yield  ) will not invoke people to act 
and improve and secure soils. We argue that a deep understanding or cognizance of 

ExteriorInterior

Soil security

Meta Soil Model

Capability

Condition

Capital

Connectivity

Codification

Cognizance

  Fig. 27.2    Conceptual relationships between the integral soil security model that provides the 
foundation for the  Meta Soil Model (MSM)  , the  fi ve dimensions   of soil security as defi ned by 
McBratney et al. ( 2014 ) and  cognizance   (i.e., the sixth dimension of soil security). Note that the 
four quadrants of the integral model (shown in  gray ) are clearly discernible perspective dimensions 
that interact with each other and are revealed through cognizance arising within and across quad-
rants. It formalizes the MSM structure and can be applied to diverse soil security problems. The 
fi ve dimensions of soil security (shown in  brown ) are not placeable in a specifi c quadrant because 
they are ambiguous dependent on their implementation       
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soils and their inherent value in providing water, food, human, and other securities 
evokes  action . Importantly, it is the awareness of the integrated nature of resources 
that motivates people to secure our common future. These ethical underpinnings of 
soil security are at the forefront in the Anthropocene that calls forth integration and 
synthesis. The MSM framework facilitates soil-ecosystem, soil-human, soil- 
education, soil-technology, and other syntheses. It explicitly uses integration trajec-
tories connecting the different perspective dimensions of soil security to create the 
MSM structure. Our objectives are to:

     1.    Formalize the MSM as the underlying integrative multi-model framework for 
soil security.   

   2.    Demonstrate the value of  integral theory   and  integral ecology   to create MSMs 
that assess soil security.    

27.2       Approach 

27.2.1     What Is the  Meta Soil Model   

 At its core, the MSM can be defi ned as the process of synthesis in which disparate 
data, concepts, or theories are integrated in ways that yield new knowledge, insights, 
or understanding. The term meta (“after,” “beyond,” “self”) is used to indicate a 
concept that is an abstraction from another concept (Grunwald  2014 ). Meta models 
are typically nested holonically. The MSM consists of coupled data of data and 
models of models describing soils of soilscapes embedded within systems of sys-
tems. Wilber ( 2000b ) posited that reality as a whole is composed of  holons  . A holon 
is something that is simultaneously a whole and a part. For example, a molecule is 
part of an aggregate, and soil aggregates are part of a pedon, and  pedons   make up 
soil-landscapes, and so on. Yet, from another perspective molecules are a whole 
with their own agency and purpose. In essence, multi-models are composed of 
holons that are spatially nested, coupled, and interconnected in hierarchical fashion 
that change through time. 

 Meta models are prominent in computer science where coupled frameworks 
enable complex data analysis, knowledge integration, and big data processing 
(Beckman et al.  1998 ; Ford et al.  2006 ) and ecology (Larson et al.  2005 ). Meta 
modeling is not limited to quantitative applications but has also been extensively 
used in conceptual, descriptive, and qualitative ways. For example, Edwards ( 2008 ) 
presented an overview of integral meta-studies and emphasized that meta- theorizing 
is essential to move from single disciplinary to multi-,  cross  -, inter-, trans-, and 
 post-disciplinary   projects. Since soil security is not isolated from other securities 
(food, energy, human, etc.) a meta model structure is essential to take the leap from 
a classical soil-centered view (Koch et al.  2013 ; McBratney et al.  2014 ) to a more 
open view that embraces partnerships with other disciplines. Meta modeling has 
been applied in a large number of ecology-oriented studies synthesizing across 
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domains and disciplinary boundaries. For example, Ostrom ( 2009 ) analyzed the 
sustainability of complex social-ecological systems adopting a multilevel, nested 
framework. Therefore, we defi ne an MSM as an integrative, multi-model frame-
work to assess soil security within the context of fi eld, regional, and global human- 
environmental interactions and various systems. Importantly, the MSM includes (i) 
human (individual and collective perspectives of land use managers, stewards of 
soils, and benefi ciaries of  goods and services   derived from soils) and (ii) environ-
mental analytical perspectives (i.e., individual and collective views of soil particles, 
 pedons  , soilscapes, and their interactions with other  biophysical  , biochemical, 
social, economic, and other system domains). Grunwald et al. ( 2015 ) presented a 
MSM fusing soil, soil spectral, and remote sensing data to model soil properties for 
the purpose of  soil quality   and  soil change   assessment. They provided an overview 
of different integration pathways that fuse, synthesize, and integrate various soil- 
environmental data and methods/models into something bigger than single soil 
properties. Similarly, other MSMs can foster the integration of data, methods/mod-
els, and systems to support  integrative soil security . In summary, this  integral 
theory  - inspired MSM framework facilitates soil, soil-ecosystem, and soil-human 
system syntheses based on  formalized   integration trajectories.  

27.2.2     From Integrative to Integral Soil Security:  Integral 
Ecology   

 The MSM enacts soil security through inter- and transdisciplinary ( integrative soil 
security ) and  post-disciplinary   ( integral soil security ) studies. The integration pro-
cess of  integral soil security  is anchored in  integral theory   (Wilber  2000a ,  b ) that 
interlinks four quadrants (Fig.  27.3 ): (i)  individual - interior  comprising subjective 
experiences of the soil-environment through our sense perceptions, (ii)  collective - 
 interior  (i.e., culturally fl avored  communication   that impact soil security, values, 
and beliefs of groups of people about soils and nature), (iii)  individual - exterior  (i.e., 
soil attributes, soil management, soil use, soil processes, etc.), and (iv)  collective - 
 exterior  comprising political, social, environmental, legal, economic, eco-, and 
other systems (e.g., global and national governance structures, soil-related policies, 
fi nancial resources provided to secure soils, etc.). These four quadrants are referred 
to as “I,” which represents fi rst person perspective (upper left quadrant (UL)); “We,” 
the second-person perspective (lower left quadrant (LL)); “It” (upper right quadrant 
(UR)); and “Its” (lower right quadrant (LR)). The latter two represent third person 
perspective in the integral model and are often referred to as AQAL (all quadrants, 
all levels and lines) by Esbjörn-Hargens ( 2005 ). These four quadrants represent 
 perspective dimension  that interact with each other dynamically and evolve to 
higher and more complex levels along developmental lines. According to Esbjörn- 
Hargens ( 2010 ) the four  perspectives   of integral theory   (i.e., subjective, UL; inter-
subjective, LL; objective, UR; and interobjective, LR perspectives, Fig.  27.3 ) are 
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irreducible and must be consulted when attempting to fully understand any issue or 
aspect of reality. This suggests that soil security cannot be fully understood through 
a one-dimensional approach that assesses only the conditions of soils or the capabil-
ity of soils. For example, even if a given soil  map   or soil capability assessment is 
highly accurate and precise, it would not necessarily secure soils. The limitation of 
such a reductionist approach is that it does not necessarily consider the perspectives 
and values from all stakeholders or groups, such as land stewards, knowledge bro-
kers, politicians, urban dwellers, and the general public (see left-hand quadrants, 
UL, and LL in Fig.  27.4 ). Examples of different perspectives and quadrants applied 
to soil security are presented in Fig.  27.4 .

    Wilber ( 2000b ) adamantly advocates avoiding the reduction of one of the per-
spective dimensions into the other – what he calls “fl atland.” For instance, the 
attempt to reduce interiors to their exterior correlates (i.e., collapsing subjective and 
intersubjective realities into their objective aspects) leads to incomplete attempts to 
address an issue as complex as soil security. However, this is prevalent in soil sci-
ence studies that map, quantify, model, and simulate soils ignoring people’s felt 

System phenomena: 
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• Political system
• Educational system
• Legal system
• Economic system
• Social system
• Technological system
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  Fig. 27.3    Overview of the integral model consisting of four quadrants (perspective dimensions): 
individual-interior (“I”), collective-interior (“We”), individual-exterior (“It”), and collective- 
exterior (“Its”) (After Wilber  2000a ,  b ; Esbjörn-Hargens and Zimmerman  2009 ). The  green arrows  
pointing out represent an individual placed in the center of the integral map (quadratic approach) 
viewing, perceiving, and understanding the dimensions of each quadrant. The  orange arrows  
pointing to the center depict an issue/problem placed in the center of the integral map (quadrivia 
approach) using different methodologies to disclose the perspectives of each quadrant       
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sense of fi rst- and second-person experiences which has led to ignorance, nonac-
tion,  paralysis  , delusion, or helplessness toward securing soils. The integral map 
reveals gaps and disconnects between quadrants that cause soil security problems. 
Participatory approaches that link right and left quadrants are most valuable to cre-
ate MSMs. For example, Chaikaew ( 2014 ) built a meta model using Bayesian belief 
networks to integrate multiple perspective dimensions to assess three different  eco-
system services   and benefi ts in a multifunctional region with diverse  soil condi-
tions  . Bouma et al. ( 2012 ) pointed out that sharing experiences of experts with 
citizen groups creates more  awareness   and links  soil information   and policies that 
foster soil security which in essence integrates across quadrants of the integral map. 

  Integral theory   allows viewing of the integral  map   based on two contrasting 
approaches. The “quadratic approach” depicts an individual situated in the center of 
the quadrants where he/she perceives reality (nature) as a result of his/her own 
embodied awareness. Here the  individual   is placed in the center of the integral map 
and has direct access to experiential, behavioral, cultural, and social/systemic 
aspects of reality because these are actual  dimensions  of his/her own existence 
(Esbjörn-Hargens  2010 ). This empowers him/her to cognize the world more 

System phenomena: 
• Soil-ecosystem
• Impact of a regional conservation program on 

soil health
• Modeling of soil carbon change across Europe
• Simulation modeling of global climate change 

and soil change in Australia
• Impact of changes in the Farm Bill (U.S.) on soil 

resource mapping
• Remote sensing supported modeling of soil 

degradation across basin x
• Relationships between economic growth and 

soil quality over the past 50 years 

Experiential phenomena: 
• “I am anxious about soil degradation threatening 

people living in poverty” (negative feelings)
• “I feel inspired to protect soil and water in my 

local neighborhood” (positive feelings)
• “I do not care about dirt” (rejection)
• “I do not know anything about soils. Why should I 

secure it?” (helplessness; paralysis)
• These soils are sacred and need protection 

(individual belief)
• I feel nurtured by mother Earth (spiritual 

experience)

Cultural phenomena:
• Communication in a stakeholder group about 

the soil-climate nexus 
• Shared experience on a terroir tour inspiring 

participants to form an action group to protect 
soils and vineyards

• Farmers care about their soils: “We value soil 
organic matter to increase crop yield”

• Global shared belief that soils are part of nature
• “Our urban action group would pay $50/yr for 

cleaner water and soil carbon sequestration”
• Belief that soils are less important than 

economic growth

Behavioral/physical phenomena:
• Soil
• Soil carbon measurement at site x
• Description of a pedon
• Lab-based soil particle analysis
• Soil fertilization of a crop field
• Soil respiration at point z
• Implementation of a best management 

practice at site y
• Measurement of soil nitrogen status at a  

plot

Soil 
security

In
di

vi
du

al

ExteriorInterior

Co
lle

ct
iv

e

  Fig. 27.4    A quadrivia of soil security with examples of different perspectives (individual-interior, 
collective-interior, individual-exterior, and collective-exterior) for each of the quadrants in the inte-
gral model. The quadrants interact with each other as visualized by the  dashed lines . Different 
methodologies are used in each of the quadrants to understand soil security through different per-
spectives (“vantage points”)       
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 intimately which subsequently evokes him/her to care and thus act in ways that are 
insightful. For example, an individual that cognizes the beauty and value of soils as 
a  common   global good to sustain soil security and human security is likely to deeply 
care about soils and is willing to contribute to secure them. In the “quadrivia 
approach,” the different  perspectives  associated with each quadrant are directed at a 
particular issue (e.g., soil security) that is put in the center of the integral map 
(Fig.  27.4 ). Here different methodologies are utilized to learn, understand, and 
address a complex problem such as soil security. For example, individual experi-
ences (UL) can be disclosed through phenomenology, mutual shared space of 
groups/communities talking and interacting with each other (LL) can be revealed 
through hermeneutics or structural analysis (e.g., surveys, questionnaires), the 
actual conditions of a  pedon   (UR) can be deducted from empirical observations 
(e.g., laboratory soil analytics, remote sensing), and the soil-ecosystem interacting 
with other systems (LR) can be discerned through system theory or  simulation   mod-
eling (Wilber  2000a ; Esbjörn-Hargens  2010 ).  

27.2.3     How to Create a  Meta Soil Model  ? 

 Grunwald ( 2014 ) fi rst proposed the MSM concept. Here we extend the concept to 
create a MSM using fi ve key questions:

•     Why  is soil security important? (to identify the value and beliefs that people hold 
about soils)  

•    For whom  to secure soils? (to identify the motivations, needs, and purpose of 
securing soils)  

•    What  soil? (to identify what soil characteristics to measure, describe, and 
experience)  

•    Who  participates in the process to secure soils? (to identify key players to use, 
protect, benefi t, and provide knowledge about soils)  

•    How  to assess soil security? (to identify how to assess soil security using differ-
ent methodologies)    

 To answer these questions, we adopt the integral  map   to assess soil security using 
 perspective dimensions  (i.e., the quadrant and the quadrivia approach of  integral 
theory  ) (Fig.  27.5 ). First, values, motivations, and beliefs that are underlying the 
purpose to secure soils are identifi ed from different individuals and groups that 
represent different  dimensions  of the integral map (Fig.  27.5 ). Ethics and moral 
beliefs play a major role in the values attached to soils. This step is often overlooked 
or ignored by soil scientists but factually the most important one in the process of 
 meta soil model  ing. Second, soil and ancillary environmental, social, cultural, and 
other data and knowledge are assembled to capture different  perspectives  of soil 
security using the integral map (Fig.  27.5 ). The data are integrated to create new 
insight and understanding of the specifi c soil security problem through synthesis of 
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data of data (e.g., pooling of data and integration of databases). Third, data and 
methods/models are integrated (e.g., through ensemble modeling, meta-analysis, or 
meta-theorizing) to create multiple soil realizations derived from different para-
digms, where each paradigm presents a different quadrant (e.g., soil data are col-
lected (UR) and  digital soil mapping   used to assess soil security (LR), the benefi ts 
of soils are assessed using a questionnaire among residents (LL), and individual 
experiences and perceptions related to soils and nature are identifi ed (UL) 
(Fig.  27.5 )). Grunwald et al. ( 2015 ) provided a comprehensive overview of integra-
tion pathways that fuse/synthesize different data and methods applied to soil- 
ecosystems that are at play in this meta modeling process. Forth, the MSM creates 
output that is interpreted and shared with people (Fig.  27.5 ). Importantly, output of 

  Fig. 27.5    Workfl ow to create a Meta Soil Model.  Panel A : The values, underlying motivations, 
and beliefs of individuals and groups/communities in relationship to soil security. These are situ-
ated in the individual-interior and collective-interior quadrants of the integral model.  Panel B : Data 
integration from all four quadrants of the integral model. Cognizance plays a pivotal role in the 
identifi cation of data aiming to achieve soil security and becoming aware of humans beliefs, val-
ues, and perceptions.
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the MSM is not limited to  soil functions   but includes a whole suite of outputs, such 
as  soil properties  , processes, gaps, vulnerability, and narratives customized to a spe-
cifi c soil security application. This is a co-creative process among those who are 
intricately involved in the development of the MSM and those who inform/provide 
inputs into the integral MSM that is then used for informed decision-making to 
secure soils.

27.3         Final Remarks 

 We believe that integration facilitated through  cognizance   within and across the 
integral map is pivotal for securing soils across local, regional, and global scales. 
 Integral ecology   and theory, which are both meta-theories, provide a foundation to 
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guide the integration process to secure soils. The paradox is that as we move toward 
the tip of the MSM revealing risk, vulnerability,  resilience  , and sustainability of soil 
and soil-ecosystems, through pluralistic integration of multiple perspective dimen-
sions, we gain clarity through simplicity. We are able to see gaps and disconnects 
with more clarity (e.g., between soil science models and people’s views) that 
empower us to make wise decisions on how to live and connect with soils rather 
than to use and exploit soils. Paradoxically securing soils does not depend on under-
standing the full complexity of soils and “the world” by generating more soil data, 
fi ner and more accurate soil maps, and complex process-based space-time simula-
tion models (UR and LR). Rather, global soil security depends on cognizing the 
values, beliefs, felt experience, and perceptions that all stakeholders have in regard 
to soil and nature and by harmonizing the  cognizance   dimension with  traditional 
     soils knowledge.  Integral soil security  provides guidance along this path into the 
future.       
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