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ABSTRACT

Conventional multivariate statistics that have been used
to create indication systems to assess soil functions raise
theoretical and practical issues. The Data Envelopment
Analysis (DEA) that can overcome such issues is a well-
known management tool in other fields than soil science.
This study is the first to use the DEA for a soil-related
phenomenon across a large region. Soil carbon sequestra-
tion (SCseq) capability index scores in Florida, USA, were
computed using the DEA with two settings (free dispos-
ability hull, FDH and variable returns-to-scale, VRS) to
assess the soil carbon sequestration function. Findings sug-
gest that sites with high annual temperature, precipitation,
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and Normalized Difference Vegetation Index as inputs were
most efficient to sequester carbon in soils. The novel pedo-
econometric approach enables to optimize the SCseq and
guides future management to enhance soil carbon, and thus,
soil health.

Keywords: Soil; ecology; environmental health; soil health/quality; cli-
mate change

Abbreviations

AWC, available water capacity; BD, bulk density; DEA, Data Envelop-
ment Analysis; FDH, free disposability hull with no convexity; In/Ix,
indicators/index; K–W test, Kruskal–Wallis; LOI, loss-on-ignition
method; LULC, land use/land cover; NDVI, Normalized Difference
Vegetation Index; PCA, principal components analysis; SCI, SCseq
capability In/Ix; SCseq, soil carbon sequestration; SOC, soil organic
carbon; SOM, soil organic matter; VRS, variable returns-to-scale with
convexity and free disposability; WB, Walkley–Black method.

1 Introduction

1.1 Index Studies in Soil Science

Conceptual notions related to soil resources, such as soil and environ-
mental quality, soil health, and soil security, may help improve awareness
of scarce land resources and, in turn, satisfy increasing human needs
for nutritious food (Kattumuri, 2018). However, these soil concepts
are complex and cannot be easily measured in the field or laboratory
(Diack and Stott, 2001; Ludwig et al., 2018). Integration and indication
approaches that go beyond individual soil attribute measurements are
necessary to address the health and security of soils (Granatstein and
Bezdicek, 1992; Karlen et al., 2001; Wander et al., 2002). Indication
schemes can quantitatively represent attributes or internal character-
istics of processes or systems that are onerous to measure/represent
(Joint Research Centre–European Commission, 2008). This approach
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has been used to evaluate and/or monitor the effects of management
practices (Gentile et al., 2001). An indication method is also practical
for scientists who present their findings to the public (Ceddia et al.,
2017; Karlen et al., 2001; Mukherjee and Lal, 2014; Sharma et al.,
2011). Multidisciplinary information can be integrated into a single
score or fewer data in the scheme so that decision makers can apply
scientific findings to guide their decisions as knowledge brokers (Bouma
and McBratney, 2013).

Two steps are generally required in indication development (Karr
and Chu, 1997): (1) Variable selection (observed measurements or
indicators) and (2) conversion to index scores (e.g., Karlen et al., 2003;
Schindelbeck et al., 2008; Wienhold et al., 2004). Aggregation to
combine scores into a single form may require that types of conditions
or qualities be measured and compared in a meaningful way, because
those characteristics are often viewed multidimensionally (Meadows,
1998; Whittaker et al., 2015; Zago, 2009).

Whittaker et al.’s (2012) comprehensive review found that statistical
methods such as factor analysis and ordination techniques were used in
more than 800 publications to develop environmental indicators/indices
(In/Ix). Many soil scientists have also calculated In/Ix metrics using
principal component analysis (PCA) to benchmark soil quality (e.g.,
Mukhopadhyay et al., 2016; Paz-Kagan et al., 2014; Zobeck et al., 2014).
Andrews et al. (2002), who were pioneers in the use of PCA to produce
a soil quality index, employed criteria for selecting a number of eigen-
vectors and eigenvalues to determine variables for index calculations.
The value of each attribute was weighted by eigenvalues to produce the
soil quality index. In this study, soil attributes with high variability
were considered to provide important information for score calculation,
assuming that the variability of attributes rather than observed soil mea-
sures express soil quality. Using the same ordination approach, Askari
and Holden (2015) examined the human effect of management systems
on soil quality. However, the notion that soil variability computed
through an ordination approach, such as PCA, infers on soil quality
stands in opposition to other approaches that consider continuous or
ordinal soil metrics to characterize soil fertility or soil quality, which
determine crop yield or ecosystem health.

Other issues with the conventional use of multivariate statistical
methods for In/Ix implementation have been reported in the literature.



210 Mizuta et al.

For example, Karr and Chu (1997) argued that multivariate analyses
aim to identify patterns or structures of data rather than to assess
impacts. Some requirements for performing PCA — including, but not
limited to, assumptions regarding multivariate normal distribution and
the linearity of variables — were also characterized as shortcomings
for In/Ix development (Shlens, 2014). Such assumptions can often be
overcome by data transformation, but the process may obscure ecologi-
cal/environmental patterns and relationships. Analytical shortcuts to
produce In/Ix scores using multivariate statistics can easily misguide
decision makers and scientists who may reach wrong or inappropriate
conclusions (Karr and Chu, 1997).

The Data Envelopment Analysis (DEA) is a popular management
tool for developing In/Ix scores in order to assess the performance levels
of functions/systems (Emrouznejad and Yang, 2017). It has been used
in diverse disciplines, such as agriculture, banking, engineering, ecology,
public policy, education (Emrouznejad, 2014; Fried et al., 2008), and
economics, but rarely in soil applications to assess the capability of
soil–environmental functions (Mizuta et al., 2018).

1.2 Data Envelopment Analysis

The DEA was used in an agronomic study to assess agricultural produc-
tivity and to optimize agricultural management (Jaenicke and Lengnick,
1999). Crop yield was used as the output, and soil chemical, physical,
and biological properties were used as inputs. Seven variables were
chosen, as follows: (1) Chemical indicators: Available phosphorus and
potassium, acidity, and available magnesium, (2) Physical indicators:
Bulk density and water-holding capacity, and (3) Biological indicator:
Carbon–nitrogen ratio. Contour maps of the calculated scores were also
developed for the study area. This pioneering study demonstrated the
benefits of using DEA applications in soil science to assess the crop
yield function.

The DEA has also been shown to be useful for creating environmental
indices for units such as firms, farms, farmers, and countries (Bellenger
and Herlihy, 2009). Soil pedons, soil map units, or soil pixels (grid
cells) are examples of units used in soil science (Mizuta et al., 2018).
In DEA studies, performance is measured by efficiency (capability),
which is composed of inputs and outputs (Banker et al., 1984; Charnes
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et al., 1978; Thanassoulis et al., 1996). Efficiency in general refers
to the total factor efficiency that is considered to be an optimum
level or status, with the possibly largest/highest output(s) based on
a given set of input(s) (Farrell, 1957). Note that we use “efficiency”
and “capability” interchangeably throughout this study to facilitate
communication between economists and soil scientists.

Capability is calculated by optimizing the quantitative relationship
between inputs and outputs in two ways: (1) Maximization of outputs
with a given quantity of inputs or (2) Minimization of inputs with a
given quantity of outputs (Bogetoft and Otto, 2011b). Either calculation
requires two steps: (1) Calculation of a frontier based on all sample
points and (2) Calculation of the distance between the frontier and the
observation points or entities of units. The reference system (i.e., the
frontier) represents the best performance level, with the points of units
located on the line assigned the value of one as the capability score. The
achievable level of capability can be represented as a comparison between
observed units and the optimum goal units that can be achieved (Fried
et al., 2008). A short distance between the frontier and observation
points suggests that the units are more efficient than points far from
the frontier (McDonald, 2009).

There are significant advantages of using the DEA compared to
PCA or other ordination methods to assess soil quality capability. First,
capability scores are comparable over different periods, as long as the
same types of inputs and outputs are chosen based on the reference
system. The DEA can produce the system, even when samples are
collected in different locations or periods (Whittaker et al., 2015). If
capability scores are calculated based on future sampling campaigns by
selecting the same attributes as inputs and outputs, the trend of improve-
ments or deteriorations in soil and ecosystem functions/services could
be monitored quantitatively. Second, the DEA yields capability scores
that can be compared spatially within and across other regions. Third,
identifying site-specific capability via DEA based on selected inputs and
outputs has tremendous power. If stakeholders aim to achieve specific
outputs, such as sequestering carbon in soils, they can adapt and select
specific inputs to achieve specific outputs. For example, selected inputs
may include conservation management and/or amendments to enhance
the available water capacity (AWC) or land use/land cover (LULC)
conversions that enhance the accretion of carbon in soils. Potential
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improvements can be also evaluated by using DEA in a quantitative
manner, because the score value of one serves as a reference value (i.e.,
an “ideal” or “optimal” value). Another advantage of DEA scores is their
ability to assess combinations of site-specific environmental conditions
that inform best management practices to optimize/maximize a specific
soil function or ecosystem service (e.g., soil carbon sequestration or
nutrient holding capacity). Some of these environmental conditions
are adaptable (e.g., change in LULC and management), while others
depend on global cycles and change (e.g., biogeochemical cycles or cli-
matic cycles with temperature and precipitation as key variables). Other
factors, such as soil type, may not be manipulated through management
as easily, since soil genesis extends over long periods of time.

This study is the first to apply the DEA to a soil-related phe-
nomenon, soil carbon sequestration (SCseq), across a large region.
SCseq capability In/Ix (SCI) scores are expected to help decision mak-
ers identify which areas would benefit from changed management from
an efficiency/capability point of view. In addition, the scores provide
information on how much the target function can be maximized with a
given set of inputs.

1.3 Objectives

The main goal of this study was to construct a DEA prototype model to
assess the capability of a critical important soil function. The specific
objective was to develop SCI scores and evaluate the applicability of the
method in soil and environmental sciences. We also aimed to identify
areas in the State of Florida that show the largest potential to maximize
the SCseq function. Note that the terms “indicators” and “indices” are
used interchangeably, because the capability scores computed by the
DEA are derived from inputs of multiple environmental variables and
the SCseq rate.

2 Materials and Methods

2.1 Study Area

This study was conducted in the State of Florida in the southeastern
United States, which covers about 150,000 km2 (Figure 1). Previous
studies conducted by Ross et al. (2013), Xiong et al. (2014a), and
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Figure 1: Maps of historic and current sampling, collocated sites, and soil organic
carbon (SOC) change between 1965–1996 and 2008–2009. Samples with positive
SCseq values are the areas where soil carbon stocks increased (sequestration), while
the negative values represent carbon losses over the time period.

Vasques et al. (2010b) derived the spatial distribution of soil orders
in Florida from the Natural Resources Conservation Service (NRCS)
database; this database mainly consists of Spodosols (32%), Entisols
(22%), Utisols (19%), Alfisols (13%), and Histosols (11%) (Natural
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Resources Conservation Service, NRCS, U.S. Department of Agricul-
ture, 2006). The main LULC types found in Florida are wetlands
(28%), pinelands (18%), urban and barren lands (15%), agricultural
lands (9%), rangelands (9%), improved pasturelands (8%), and 13%
other LULC type (Florida Fish and Wildlife Conservation Commission,
2003). The annual mean temperature in Florida was 22.3◦C, and annual
mean precipitation was 1,373mm based on data from the National
Climatic Data Center (2008). Slopes vary between 0% and 5% (United
States Geological Survey, 1999).

2.2 Data Sources

2.2.1 Historical Dataset

The legacy (historical) data and current data were compiled to assess
SCseq standardized on an annual basis in units of gCm−2 yr−1 (Vasques
et al., 2010a,b,c). The two datasets together covered an approximately
40-year period from 1965 to 2009 (Table 1). The historical data (HD)
resemble the “Florida Soil Characterization Database” and contain 1,251
site-specific soil profiles collected between 1965 and 1996. The dataset
was described in detail by Grunwald et al. (2004). Sampling locations
were selected by relying on the tacit expert knowledge of field soil
scientists for the purpose of soil surveying.

Both soil organic carbon (SOC) and bulk density (BD) were mea-
sured in the laboratory. The soil organic matter (SOM; g soil g−1C)

Table 1: Description of the historical and current soil observation datasets.

Datasets
Sampling
period

Sampling
size Sampling design Measurements

Historical (HD) 1965–1996 1,251 Expert knowledge
based

BD (g soil cm−3)
SOM (%)

Current (CD) 2008–2009 1,014 Stratified randoma BD (g soil cm−3)
IC (%)
TC (%)

Abbreviations: BD= bulk density; IC= inorganic carbon; SOM= soil organic matter;
TC= total carbon.
aTwo strata including soil suborder and land use/cover types were applied to capture the
broad range of soil carbon variability across the Florida State.
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was analyzed by the Walkley–Black modified acid-dichromate method
(SOMWB) for the A, B, C, and E mineral soil horizons, while loss-
on-ignition (SOMLOI) was employed for O horizon and organic soils
(Histosols) (Ross et al., 2013). Two different pedotransfer functions
were employed, which were derived by Ross et al. (2013). Linear regres-
sions were used for organic soils to convert both historical SOMWB for
mineral soils and historical SOMLOI into SOC, the latter representing
SOC measured by dry combustion with a Shimadzu SSM-5000A as
described below. The calculations from the functions showed an R2 of
0.90 (Equation (1)) and 0.99 (Equation (2)) (Ross et al., 2013). The
equations for the conversions are described below.

SOC in mass unit(%) = 0.08 + (0.85× SOMWB) (1)

SOC in mass unit(%) = 0.5× SOMLOI (2)

SOC measurements in stocks (kgCm−2) were calculated with SOC
measurements in mass units and measured BD (g soil cm−3).

2.2.2 Current Dataset

The current soil data (CD) were collected between 2008 and 2009 during
a reconnaissance soil-sampling campaign in topsoil (0–20 cm depth)
across Florida (Table 1). A total of 1,014 samples were collected with a
stratified-random sampling design based on soil orders-LULC classes.
Inorganic (IC) and total carbon (TC) were measured with 50–500mg of
ball-milled soil samples combusted at 900◦C by the catalytic oxidation
method (Shimadzu SSM-5000A) and with 20–250mg of ball-milled soil
samples treated with phosphoric acid in the gas analyzer at 200◦C,
respectively. The SOC was derived by the subtraction of minuscule
amounts of IC from TC (TC− IC = SOC). SOC measurements in mass
units (%) were converted to stock units (gm−2) using the measured BD
and soil depth (20 cm).

2.3 Data Harmonization and Calculation of Soil Carbon
Sequestration Rates

The HD and CD were harmonized in order to calculate the SCseq rate.
The overall protocol developed by Ross et al. (2013) was adopted in this
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study. The HD, which used a horizon-based sampling scheme, had to
be further reconstructed to SOC with a fixed-depth profile (0–20 cm) to
harmonize it with the CD. Thus, a depth-weighted averaging technique
was employed using the statistical software R’s (3.2.4) packages “plyr”
and “RODBC” to convert horizon-based SOC to fixed depth (0–20 cm).
The standardized SOC in mass units (%) in 0–20 cm soil depth was then
converted to stock units using the following equation with observed BD
measurements:

SOC stocks(kgCm−2) =

SOC in mass unit (%)× BD(g soil cm−3)20 (cm)× 1000(m−2 cm−2)

1000 (g/kg)

(3)

Samples that were spatially collocated within a buffered zone (with
30m diameter) and showed the same soil order in both HD and CD were
selected for further analysis (Figure 2). This procedure was conducted
in ArcGIS v10.4 (Environmental System Research Institute, Redlands,
CA, USA). Soil carbon stock changes were calculated by subtracting
SOC stocks of the HD from the CD at the collocated sites. The changes
were then divided by the difference in the sampling years between the
HD and CD to obtain the SCseq (kgCm−2 yr−1). The changes in
SOC stocks are described as SCseq in this research, because almost
all carbon for topsoils in Florida is stored in organic form, with only
miniscule amounts of inorganic carbon (Knox et al., 2015). Samples
with positive SCseq values are the areas in which soil carbon was gained
(sequestration), while the negative values represent carbon losses over
the study period. All calculated SCseq values were positively shifted
by the minimum value of SCseq (−0.87 kgCm−2 yr−1) to ensure that
SCseq values were equal to or above zero, because the DEA requires
nonnegative values for processing.

2.4 Environmental Dataset for the DEA

The SCI scores were calculated based on the inputs of pedogenic, cli-
matic, biotic, and hydrologic factors relevant to the target function
of soil carbon sequestration to optimize its capability. Vasques et al.
(2012a,b) found that AWC plays a significant role in determining the
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Figure 2: Schematic workflow for indicator calculation using the Data Envelop-
ment Analysis. The selected ED contained AWC, PPT and annual mean Temp,
and annual mean NDVI (please see details of environmental data in Table 1).
Abbreviations: BD= bulk density (g cm−3); c= current dataset; DEA=Data Envel-
opment Analysis; EV= environment variables; h=historical dataset; SCI=SCseq
capability Indicator/Index; SOC= soil organic carbon concentration (%); SOCS=
soil organic carbon stocks (kgCm−2); SCseq= soil carbon sequestration rate
(kgCm−2 yr−1).

spatial variability of soil carbon in Florida. Climatic, biotic, and pedo-
genic data — such as temperature, precipitation, Normalized Difference
Vegetation Index (NDVI), soil order, and LULC types — were also
identified as influential contributors to SCseq in other studies (e.g., Guo
et al., 2006; Xiong et al., 2012, 2014a). Frank et al. (2015) and Guo and
Gifford (2002) found that climatic factors, as well as hydrological condi-
tions, affect soil carbon significantly. Xiong et al. (2014a) also identified
those selected variables among 210 potential environmental–human
variables relevant to soil carbon sequestration in Florida (Grunwald
et al., 2011). Eight numerical variables that may have an influence on
SCseq were identified based on such previous studies (Table 2).
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The NDVI data were derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS), which characterizes live green standing
vegetation. These data may also serve as a biotic proxy and allow
discernment between barren soil areas and vegetated areas (Tucker,
1979). The index is calculated as a normalized ratio of the red (RED)
and near-infrared (NIR) spectral wavelengths (Gaughan et al., 2012):

NDVI =
NIR − Red

NIR + Red
(4)

Note that overall annual mean and means of maximum and minimum
NDVI collected for each month throughout the year 2005 were calculated
(Xiong et al., 2014a). Another environmental variable, AWC (cm cm−1),
expressed as a volume fraction, was estimated as the difference in the
water contents of soil at field capacity and at the permanent wilting
point (Bliss and Sharon, 2014). In addition, atmospheric properties
(i.e., temperature and precipitation) collected from the PRISM Climate
Group, Oregon State University (http://prism.oregonstate.edu), were
averaged for 1971–2010 overall (Table 2). The means of maximum
and minimum temperatures collected for each month throughout the
30-year period were also calculated. The categorical data (i.e., LULC
and soil order) were only used for the purposes of interpretation. The
spatial extraction function in ArcGIS was used to extract data from
geospatial data layers for each collocated sampling site (n = 170).
Broad LULC groups were generated by combining specific categories to
avoid insufficient sample size for statistical procedures. For example,
agricultural crop and citrus field were reclassified as the crop group. The
grassland group contained freshwater marsh and wet prairie types. Xeric
upland forest and mesic upland forest were categorized as the forest
group. Lastly, the wetland group contained shrub swamps, hardwood
swamps, mixed wetland forests, and cypress swamps.

Of the eight pre-selected variables (Table 2), relevant factors for
the DEA were selected. First, the Boruta all-relevant variable selection
method was carried out using the Boruta package in R (Figure 3). In
brief, the Boruta algorithm finds features relevant to SOC variation
linearly and non-linearly by comparing the importance of the original
attribute(s) with the importance of the shadow variables randomly
based on the random forests’ classification algorithm (Kursa and Rud-
nicki, 2010). Attributes that are significantly better than shadows are

http://prism.oregonstate.edu
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Figure 3: Importance (Z-score) of the all-relevant variables to infer the soil carbon
sequestration rate (kgCm−2 yr−1) identified by the Boruta variable selection method.
The 1st to 5th boxes from right indicate variables of significant importance, while the
7th and 8th boxes identify tentative variables through rough fixation, which require
further investigation. Shadow variables as shown on the 6th, 10th, and 11th boxes
were created by each iteration of the Boruta algorithm to discern the only relevant
variables. The 9th box identifies the variables that are not relevant. Consequently, all
variables except NDVmin were selected by the Boruta selection method. Abbrevia-
tions: AWC= available water capacity (cm); Max=maximum value, Min=minimum
value; NDVI=Normalized Difference Vegetation Index; PPT= annual mean precipi-
tation (mm); S= shadow variable; T= temperature (◦C).

accepted for further calculation, while non-significant ones are removed
from the iteration (Figure 3). The Boruta test identified the important
variables for SCseq rate, which exceeded the importance value of the
shadow variables. These included AWC, annual maximum, minimum,
and mean temperature, annual mean precipitation, and maximum, min-
imum, and mean NDVI. Spearman correlation metrics (coefficients)
were used to identify redundancy among the relevant variables selected
by Boruta (Figure 4). We set the threshold for the p value to over 0.80,
according to recommendations provided by Andrews et al. (2002). The
four variables selected by the Boruta selection method and Spearman
correlation metrics were considered as inputs in the DEA (i.e., precipi-
tation, temperature, NDVI, and AWC). The first two input variables
as well as soil orders and LULC types were considered to be the fixed
factors, and the NDVI and AWC to be managerial (Bauer and Black,
1992; Buma, 2012).
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Figure 4: Probability density distribution and Spearman correlation matrix plots
of selected environmental variables identified by Boruta: AWC= available water
capacity (cm); NDVI=Normalized Difference Vegetation Index; PPT= annual mean
precipitation (mm); T= annual mean temperature (◦C). Display of the Spearman
correlation matrix with data histogram and xy plot between variables (∗p value< 0.1,
∗∗p value< 0.05, ∗∗∗p value< 0.01). The selected variables based on the Boruta algo-
rithm were analyzed by the Spearman Correlation matrix to reduce data redundancy.
Abbreviations: Max=maximum value; Mean=mean; Min=minimum value.

The selected soil and environmental attributes were grouped, based
on quartile systems, into four categories: Low, Low–Median, Median–
High, and High (Table 3). This allowed to evaluate SCI scores depending
on the different levels of the four inputs. For example, annual mean
temperature, which ranged from the minimum value (18.5◦C) to the
first quartile (19.7◦C), was classified as Low. The Low–Median, Median–
High, and High categories consisted of temperatures from the first quar-
tile to the median (Low–Median), from the median to the third quartile
(Median–High), and the third quartile to the maximum value (High).
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2.5 DEA-SCI Calculations and Assumptions

The hyperdimensional frontier “sheet” was calculated based on sample
points with four inputs (i.e., the four environmental input variables
selected: annual mean precipitation, annual mean temperature, annual
mean NDVI, and AWC) and one output (SCseq). Several options
in terms of returns-to-scale assumptions are available when running
the DEA. Here the free disposability hull with no convexity (FDH)
assumption and the variable returns-to-scale with convexity and free
disposability (VRS) assumption were selected as standard scale assump-
tions underlying the DEA (Banker et al., 1984; Daraio and Simar,
2007). The FDH assumption allows a certain quantity of outputs to
be generated by more inputs; in other words, surplus inputs can be
freely disposed of. Likewise, a given quantity of inputs can also pro-
duce fewer outputs (i.e., free disposability of outputs). The shape of
the frontier resembles an isotonic regression. On the other hand, the
VRS-DEA accepts not only the features the FDH assumption provides
in index development, but also more flexibility for the relationship
between inputs and outputs. This approach can create a concave line
and, as expected, restricts the efficiency scores to be lower than the FDH
scores. Yet both settings are useful, because they enable to capture
complex functions or systems. Illustrative examples of different lines
created by different assumptions are available in Bogetoft and Otto
(2011a).

The output-oriented DEA-SCI was calculated using the Bench-
marking package in R, because this study aimed to maximize output
capability — that is, the SCseq rate — based on a combination of the
selected soil/environmental data inputs. The calculated FDH-SCI and
VRS-SCI scores were mapped out in the study area within the State
of Florida using ArcGIS software (Environmental Systems Research
Institute, Redlands, CA) for spatial interpretation.

2.6 Other Statistical Tests

The Kruskal–Wallis (K–W) rank sum test — which is a nonparamet-
ric variance test suited for nonnormally distributed data with uneven
sample size for each class — was employed to evaluate whether capa-
bility scores differ significantly by soil order and LULC (Holland and
Wolfe, 1973; Ross et al., 2016). Pairwise comparisons using the Tukey
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and Kramer (Nemenyi) test with Tukey-distance approximation were
performed to discern any statistical differences among the groups of
soil/environmental factors (Pohlert, 2014).

3 Results

3.1 Selection of Relevant Environmental Variables

The environmental variables, which were selected by the Boruta and
Spearman methods, were not statistically significant for variation of
the SCseq rate (p > 0.05), according to the K–W test (Figure 5).
In addition, any statistical differences in the means of SCseq rates
among the categorical groups, including the environmental covariates
and LULC and soil orders, were not observed based on the post hoc
Tukey and Kramer (Nemenyi) test (Figure 5).

3.2 Relations of Soil/Environmental Factors to SCseq
Rate and SCI Scores

SCI scores were calculated via the DEA, with SCseq as outputs and the
four environmental variables as inputs at the collocated sites. Two DEA
assumptions (FDH and VRS) produced different results. FDH-SCI
and VRS-SCI scores ranged from 1.00 to 1.09 and from 1.00 to 1.15,
respectively. The results of the K–W test showed that SCI scores were
significantly influenced by annual mean precipitation (Chi-squared =
11.8, degrees of freedom = 3); AWC (Chi-squared = 8.0, degrees of
freedom = 3); and NDVI (Chi-squared = 9.5, degrees of freedom = 3)
at the 95% confidence level (Figure 6). However, only the precipitation
classes had statistically distinct differences in the means of the FDH-
SCI scores among the groups. The mean score for the High class was
statistically lower and closer to the value of one than was the mean
score for the Low class.

The variation in SCI scores calculated under the VRS assumption
was statistically influenced by all of the soil/environmental factors,
with the exception of AWC (LULC: Chi-squared = 24.6, degrees of
freedom = 8; Soil orders: Chi-squared = 13.9, degrees of freedom = 6;
Temperature: Chi-squared = 12.5, degrees of freedom = 3; Precipita-
tion: Chi-squared = 18.9, degrees of freedom = 3; NDVI: Chi-squared =
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Figure 5: Soil carbon sequestration rates by A) land-use/land-cover types observed
during sampling period for current dataset (2008–2009), B) soil orders, C) annual
mean temperature (1971-2010), D) annual mean precipitation (1971-2010), E) avail-
able water capacity, and F) mean Normalized Difference Vegetation Index (2005)
classes. The alphabetic letters designate the significant differences in means between
the variables based on the Tukey and Kramer (Nemenyi) test with the Tukey distance
approximation at the 95% confidence level.

18.3, degrees of freedom = 3) at the 95% confidence level (Figure 7).
VRS-SCI scores for the forest group were significantly lower than the
scores for the urban class. Only one sample in sugarcane was observed,
thus allowing for no firm conclusions to be drawn. The wet prairie
group, rangeland group, and wetland group contained 5, 10, and 7
samples, respectively, while the other groups contained more than 20
samples, providing for a more robust interpretation. SCI scores with
high temperature, precipitation, and NDVI were considerably lower
than the other groups. Note that each of the soil/environmental factors,
except for LULC and soil orders, had a relatively even sampling size of
42 or more.
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Figure 6: Soil carbon sequestration indicators/indices (SCI) scores under an assump-
tion of free disposability hull without convexity. Each scores is classified by A)
land-use/land-cover types observed during sampling period for current dataset (2008–
2009), B) soil orders, C) annual mean temperature (1971–2010), D) annual mean
precipitation (1971–2010), E) available water capacity, and F) mean Normalized
Difference Vegetation Index (2005) classes. The alphabetic letters designate the
significant differences in means between the variables based on the Tukey and
Kramer (Nemenyi) test with the Tukey distance approximation at the 95% confi-
dence level.

Spatial maps of the SCI scores under FDH and VRS were created.
The smaller circle (the larger SCI scores) represents the higher capability
of the soil carbon sequestration function. It appears that sampling points
located in the south and central regions had the low SCI scores under
both assumptions, while VRS-SCI scores emphasized the inefficiency
in sequestration capability across the State of Florida. The variation
in VRS-SCI scores was spatially larger than that of the FDH-SCI
scores.



New Indication Method Using Pedo-Econometric Approach 227

Figure 7: Soil carbon sequestration indicators/indices (SCI) scores under an assump-
tion of variable returns to scale with convexity and free disposability. Each scores
are classified by A) land-use/land-cover types observed during sampling period for
current dataset (2008–2009), B) soil orders, C) annual mean temperature (1971–
2010), D) annual mean precipitation (1971–2010), E) available water capacity, and
F) mean Normalized Difference Vegetation Index (2005) classes. The alphabetic
letters designate the significant differences in means between the variables based on
the Tukey and Kramer (Nemenyi) test with the Tukey distance approximation at
the 95% confidence level.

4 Discussion

4.1 Interactions between Soil Carbon Sequestration Rate,
Capability Scores, and Fixed Input Variables

Four environmental and biotic variables were selected for the DEA
calculation based on the Boruta analysis and Spearman correlation
metrics: annual mean temperature and precipitation, AWC, and mean
NDVI (Figures 3, 4). Statistical differences in the means of VRS-
SCI scores for each environmental category (fixed variables include
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LULC, soil types, temperature, and precipitations) were identified and
compared with FDH-SCI scores (Figures 6, 7). There are several reasons
for the environmental factors’ lack of significant influence on the SCseq
rate, as well as on SCI scores calculated with the FDH. The first reason
is the weak power of statistics to detect significant differences among
the groups. A nonparametric test (Kruskal–Wallis rank sum test) and
Nemenvi pairwise comparison were used because of the unequal sample
sizes of nonnormally distributed data for each LULC group. The second
reason is the different sample sizes of data, which led to use of the
nonparametric test. The third reason is the sample size for each class,
which in some cases was small. Lastly, the calculation for the frontier
under FDH and VRS assumptions yielded greatly varied results. FDH
produced a stair-like frontier, while the one for VRS was somewhat
curved, depending on samples or units (Bogetoft and Otto, 2011a). This
explains why VRS produced more statistically sensitive scores than
FDH.

Significant differences in the SCI scores under the VRS assump-
tion were observed between forested and urban areas among all LULC
types (Figure 7). Scores in the urbanized areas were higher than those
in the forested areas, meaning that the capacity to sequester carbon
was higher in forests than in urban areas. The risk of carbon loss by
converting forested areas has been supported by other studies (Bonan,
2008; Dawson and Smith, 2007; Pouyat et al., 2002). Other SOC
sequestration studies conducted in Florida have shown that soils in
forests did not accrete substantial amounts of carbon over the 40-year
period, although conversions of pineland and rangeland sites into wet-
lands led to profound increases in SOC stocks (Xiong et al., 2014b).
Ross et al. (2016) demonstrated that wetland sites in northeastern
Florida tended to gain SOC, but the results from this study found no
statistical differences in SCI scores of wetlands compared with other
LULC groups. The differences found in SCI scores, but not in SCseq
rates, among some LULC indicate that the capability function can
be quantified not by simply measuring/estimating the SCseq rates,
but by considering the relationship between the output function and
the relevant input factors that produce the function. This interpreta-
tion differentiates most of the past studies conducted to quantify soil
functions by only measuring soil properties. Thus, further investiga-
tions are required to elucidate not only the mechanism of the carbon
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sequestration function but also its capacity using relevant inputs for
various LULC types.

Soil orders did not have much influence on variances in SCseq rate
or SCI scores. Histosols, diagnosed by considerable amounts of organic
matter (at least 20 to 30% SOM in more than 40-cm thick layers),
showed a negative mean SCseq rate (Natural Resources Conservation
Service, NRCS, U.S. Department of Agriculture, 1999; Figures 5, 6).
This might be due to the erroneous taxonomic classification of sites,
the unequal sample size (n = 5) and/or nonnormal SCseq rates found
in Histosols. Although there is ample literature showing soil carbon
accretion of 0.25 to 0.45 cm/year, the few Histosol sites may have been
impacted by temperature-induced oxidation (dryness) in these organic
soils (Anderson, 1964). Xiong et al. (2014a) also found that Histosols in
Florida cultivated with sugarcane (Everglades Agricultural Area) have
lost substantial soil carbon due to subsurface drainage management in
this area. The carbon loss was caused by dramatic oxidation of the
organic soils (Histosols) due to changes in land use cover over the last
four decades.

4.2 Interactions between Soil Carbon Sequestration Rate,
Capability Scores, and Managerial Input Variables

Two managerial input variables (i.e., AWC and NDVI) that were impor-
tant variables relevant to SCseq were incorporated into SCI calculations.
Surprisingly, the AWC did not statistically differentiate the FDH-SCI
and VRS-SCI scores in the classification scheme. This may offer valuable
insights for future studies, because it infers the mask effect from the
input/fixed variables that differentiated the SCI scores statistically by
the classification schemes. SCI scores might need to be calculated glob-
ally by using all fixed and managerial variables as DEA input variables,
as presented in this study, or by calculating the scores locally by having
multiple frontiers under certain fixed factors. The reason is that each
area may use a different frontier to calculate the capacity/efficiency
of the function. O’Donnell et al. (2008) also pointed out that using
the same frontiers is only meaningful when the frontiers for different
groups of units are identical. Thus, a meta-frontier that envelops group
frontiers may also be used in future studies of DEA applications in soil
science.
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VRS-SCI scores by NDVI classes showed that areas with high NDVI
tend to have scores closer to the reference value of one. An approxi-
mately 2% increase in SCseq capability under high NDVI was observed
compared with sites with low NDVI (Figure 7). The NDVI indicates
that high ecosystem productivity and biomass production are positively
correlated with SOC (Tieszen et al., 1997). Thus, it makes sense to
observe a decrease in SCI scores as long-term average precipitation and
NDVI (i.e., green dense vegetation) increase (Jobbágy and Jackson,
2000). In other words, areas with lower NDVI might need additional
attention in terms of management to improve the output function (i.e.,
to sequester carbon in soils).

Overall VRS-SCI scores emphasized the inefficiency in the SCseq
function across Florida. The soils may increase the output function by

about 15%
(
=

1−( 1
1.15)

( 1
1.15)

)
using the same level of inputs. The spatial

map (Figure 8) depicts the areas in which attention to management
and efforts are needed to optimize the potential capability of the SCseq
function. This need was especially notable in the northern part of
Florida. In this prototype study the successful differentiation ability
of the soil function capability among samples suggests use of the VRS
over the FDH.

The seasonal variability of precipitation was not considered due
to the use of long-term averaged climatic data in this study, even
though this influence has been reported to be one of the driving factors
in alternate land cover patterns, the carbon cycle, and the carbon
sequestration function (Guo and Gifford, 2002; Knapp et al., 2002).
According to Ingram et al. (2013), during the past 100 years no long-term
trends were revealed in the time series of annual or summer seasonal
precipitation across the southeastern U.S. except along the northern
Gulf Coast, where precipitation has increased. During the last several
decades, inter-annual variability in precipitation has increased, with
more exceptionally wet and dry summers. Future projections using
multi-model methods suggest that precipitation will increase across
most of the southeastern U.S. in all seasons except summer, where a
decrease of as much as 15% is noted in South Florida. It is also projected
that inter-annual precipitation variability will increase through the first
half of the 21st century in the southeastern U.S., with the greatest
variability projected during the summer season. The annual number
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Figure 8: Soil carbon sequestration indicators/indices (SCI) scores under an assump-
tion of variable returns to scale with convexity and free disposability (VRS) and free
disposability hull, no convexity (FHD) in the State of Florida. (Florida boundaries:
United States Census Bureau, 2000, 1:125,000)

of days with extreme precipitation is expected to increase across more
of the southeastern U.S. by the mid-21st century (Ingram et al., 2013).
Considering these changes in future precipitation levels in Florida, it is
likely that SCI scores will also be impacted by higher precipitation.

According to Ingram et al. (2013), mean annual temperatures are
projected to increase across the southeastern U.S. throughout the 21st
century, with the largest increases (3◦F to 5◦F) projected over the
interior region and the smallest increases over South Florida. The
greatest warming trend is projected to take place during the summer
months, with the maximum number of temperatures exceeding 95◦F
to increase by the mid-21st century and with the greatest increase
(35 additional days annually) in South Florida (Ingram et al., 2013).
Temperature changes may also affect SCI scores, as climatic variables
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play a role in the computation of SCI scores. Thus, future climate
change may impact SCI scores.

In this study covering the past few decades, precipitation showed
more significant effects on SCI than temperature. However, the pro-
found increase in climatic warming projected for Florida, which may
stimulate increases in soil respiration and SOC losses, may or may not
be compensated for by a wetter climate, which in general tends to
increase SCseq. It is unknown what the combined effects of changes in
temperature and precipitation are on terrestrial ecosystems that differ
by geographical region, soil-landscape setting, management, and land
use (Cox et al., 2000). Wu et al. (2011), in a meta-analysis, found
that a warming climate and increased precipitation generally stimulate
plant growth and ecosystem carbon fluxes. Their synthesis suggests
that warming significantly stimulates total net primary productivity
and increases both ecosystem photosynthesis and ecosystem respiration.
This is just a first step in understanding the effects of combined climate–
soil–yield–nutrient interactions, as presented by Folberth et al. (2016).
Their global study revealed that soils have the capacity to either buffer
or amplify the impact of climate change on yield (productivity) that is
modulated by fertilizer application (nutrient status).

5 Conclusions

We demonstrated the applicability of the DEA technique to assess SCI
scores in Florida. The SCI scores were computed through synthesis
of multiple pedogenic, hydrologic, biotic, and climatic inputs. Largest
capabilities of the function were identified at sites where more precipi-
tation, higher temperature, and higher NDVI were observed. The SCI
scores were highly site-specific, suggesting that future In/Ix assessment
requires fine-scale data to capture pedogenic, hydrologic, biotic, and
climatic conditions. In light of emergent digital agriculture and fine-
scale sensor technology the presented soil-DEA approach has much to
offer for future applications. In particular, the VRS successfully enabled
clear interpretation of the SCI scores among various fixed/managerial
inputs, compared with the FDH.

The DEA offers a soil indication system to assess capability along
a continuous spectrum from low to high (soil reference system). The
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soil indication system presented here encompassed multiple soil-related
properties with different units. This input–output pairing yields the
reference system, which allows to calculate the achievable rate of output
efficiency/capability. It also allows to compare output scores across
different space and time scales (e.g., different soilscapes and at multiple
time periods). Thus, the integration of econometric and pedometric
methods holds the potential for scientists to move beyond the mapping
of soil properties to assess soil functions, ecosystem services, risks,
quality, and security. These methods may also help propel soil science
into a new era that allows the assessment of complex soil–environmental
phenomena and their monitoring through time and in space. It is
envisioned that the DEA and similar econometric methods are useful
to assess nutrient availability and the capacity of soil, water, and other
ecosystems under varying stressors, such as changes in land use, climate,
or management.
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